Synthesis
Of
Dynamic
Programming
Algorithms

Yewen (Evan) Pu
Rastislav Bodik
Saurabh Srivastava



Synthesis of DP: Why?

* Dynamic Programming is ParLab pattern #10

* Dynamic Programming is prevalent:
e Al:variable elimination, value iteration
* Biology: Gene matching
e Database: Query optimization

e Dynamic Programming is difficult

e (Certain Dynamic Programming Algorithm can be
parallelized



Synthesis of DP: Goal

Synthesizer for a subset of DP

* First-order recurrence: Captures O(n) DP

A domain-specific parameterizable compiler
e Input: Specifications, Output: Algorithms

e Building block for harder DP algorithms




Dynamic Programming

Speed up search algorithm that is exponential run-
time by combining common sub-problems

Example: fib(n)

)
S



Challenges in DP algorithm design

Invent sub-problems: Decompose original problem
Sub-problems may not be explicitly stated in
the original problem.

We may need to invent different sub-problems.
Recurrence: Solve problem from its sub-problems

Formulate recurrences over the new sub-
problems that puts them back together



Maximal Segment Sum

Given an array of positive and negative integers,
find the greatest sum of a consecutive substring.



Maximal Segment Sum

Given an array of positive and negative integers,
find the greatest sum of a consecutive substring.

naive_mss(array): linear_mss(array):
best = 0 best_suffix = array()
for i from @ to n-1: best _sofar = array()

for j from i to n-1: best_suffix[0] = ©
v = sum(array[i,j]) best_sofar[0] )
best = max(best, v) for i from 1 to n:

return best best suffix[i] =
max(best_suffix[i-1]+array[i-1],0)
best_sofar[i] =
max(best suffix[i-1], best sofar)

return best _sofar|n]



Maximal Segment Sum

Given an array of positive and negative integers,
find the greatest sum of a consecutive substring.

naive_mss(array): linear_mss(array):
best = 0

for i from @ to n-1:

for j from i to n-1: best_suffix[0] %]

v = sum(array[i,j]) best_sofar[0] )

best = max(best, v) for i from 1 to n:

return best

return best _sofar|n]



Synthesizer Work-flow




Maximal Independent Sum (MIS)

Input: Array of positive integers

Output: Maximal sum of a non-consecutive
selections of its elements.

10



Synthesizer Work-flow

11



Exponential Specification

The user can define a specification as an exponential
algorithm for MIS, it is:

mis(A):
best = ©
forall selections:
if legal(selection):
best = max(best, value(A[selection]))
return best

12



Synthesizer Work-flow




Parameters

Comes from the user
For simple problems, extract from specification

For MIS:

14



Synthesizer Work-flow

|
)/




Skeleton: Shape of F.O.R

linear _mis(A):
tmpl = array()
tmp2 = array()
tmpl[0] = initializel()
tmp2[0] = initialize2()
for i from 1 to n:

tmpl[i] = updatel(tmpl[i-1],tmp2[i-1],A[i-1])
tmp2[i] = update2(tmpl[i-1],tmp2[i-1],A[i-1])

return term(tmpl[n],tmp2[n])

16



Update: Propagating Forward

Constructed from user’s parameters
Enumerates all compositions of operations
Selects the correct program

updatel(x,y,z) =
choose_from(
{0,X,¥,Z,.X+Y,..,max(X,y)+Z,..})

For m sub-problems and n operators:
Total of O((m™n™)™) possible programs

17



Synthesizer Work-flow




MIS: The solution algorithm

linear _mis(A):
tmpl = array()
tmp2 = array()
tmpl[o] = ©
tmp2[0] = ©

for 1 from 1 to n:
tmpl[i] = tmp2[i-1]+A[i-1]
tmp2[i] = max(tmpl[i-1],tmp2[i-1])

return max(tmpl[n],tmp2[n])

19



A Guy walks into an interview...

The Problem:
Given an array of integers: A=[a,a,, ..., d,],
return: B=[b,b,,..,b,]
such that: b=d, +...+d,-d

Do it in O(n) and cannot use subtraction?

20



Composition of Skeletons

puzzle(A):
B = skeletonl(A)
C = skeleton2(A,B)
D = skeleton3(A,B,C)

return D

21



Solution

puzzle(A):
B = skeletonl(A)
C = skeleton2(A,B)
D = skeleton3(A,B,C)
return D

skeletonl(A):
tmpl = array()
tmpl[O] = ©
for i from 1 to n-1:
tmpl[i] = tmp[i-1]+A[n-1]
return tmpl

skeleton2(A,B):
tmp2 = array()
tmp2[n-1] = ©
for i from 1 to n-1:
tmp2[n-i-1]
= tmp2[n-i]+A[n-1i]

skeleton3(A,B,C):
tmp3 = array()
for i from @ to n-1:
tmp3[i] = B[i] + C[i]
return tmp3

22



Synthesis of Parallelization: Prefix Sum

Compute a F.O.R. out of order

Goal: synthesize an associative function that allows solving
the problem in parallel, as a prefix sum.

The Approach: Exactly the same. The Skeleton is now a
tree, the update needs to be associative.

result = update(update(A[0],A[1]),
update(A[2],A[3]))

23



Synthesized associative operator for MIS

t1

This operator requires invention of 4 sub-problems

24



Scalabilities of Synthesizer

updatel(x,y,z) =
choose from(
{0,X,¥,Z,.X+Y,..,max(X,y)+Z,..})

For m sub-problems and n operators:
Total of O((m™n™)™) possible programs,
many of them are redundant.

Reduce the search space by:

Symmetry reduction of commutative binary operators

Apply unary operators at the leaves
Encode DP optimality structure

25



Scalabilities of Synthesizer

10000
1000 :
100 B Enumeration
10
) B Symmetry
Reduction
0.1 @ Unary
0.01
0.001 B Optimality

26



Comparison to Other Approaches

Suppose the user wants to write a DP algorithm...

27



Future Works

Synthesis of Real World Problems

Synthesis of more prefix sum (on these problems)
Other DP Problems (that are not F.O.R)

Further scalability tricks

Complete the pipe (implementation on GPU)

28



The End: Questions?

29



	_Synthesis________________�__Of___________________�______________Dynamic____�__________Programming_____�_________Algorithms________
	Slide Number 2
	Slide Number 3
	Dynamic Programming
	Challenges in DP algorithm design
	Maximal Segment Sum
	Maximal Segment Sum
	Maximal Segment Sum
	Synthesizer Work-flow
	Slide Number 10
	Synthesizer Work-flow
	Exponential Specification
	Synthesizer Work-flow
	Parameters
	Synthesizer Work-flow
	Skeleton: Shape of F.O.R
	Update: Propagating Forward
	Synthesizer Work-flow
	MIS: The solution algorithm
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Synthesis of Parallelization: Prefix Sum
	Synthesized associative operator for MIS
	Scalabilities of Synthesizer
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29

