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Synthesis of DP: Why? 

• Dynamic Programming is ParLab pattern #10 
 

• Dynamic Programming is prevalent: 
• AI: variable elimination, value iteration 
• Biology: Gene matching 
• Database: Query optimization 

 
• Dynamic Programming is difficult 

 
• Certain Dynamic Programming Algorithm can be 
     parallelized 



Synthesis of DP: Goal 

Synthesizer for a subset of DP 
• First-order recurrence: Captures O(n) DP 
• A domain-specific parameterizable compiler 
• Input: Specifications, Output: Algorithms 
• Building block for harder DP algorithms 



Dynamic Programming 

Speed up search algorithm that is exponential run-
time by combining common sub-problems 

Example: fib(n) 
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Challenges in DP algorithm design 

Invent sub-problems: Decompose original problem 
 Sub-problems may not be explicitly stated in 
 the original problem. 
   
 We may need to invent different sub-problems. 
 
Recurrence: Solve problem from its sub-problems 
 Formulate recurrences over the new sub-
 problems that puts them back together 
 



Maximal Segment Sum 
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Given an array of positive and negative integers, 
find the greatest sum of a consecutive substring. 
 
 
 



Maximal Segment Sum 

naive_mss(array): 
  best = 0 
    for i from 0 to n-1: 
      for j from i to n-1: 
        v = sum(array[i,j]) 
        best = max(best, v) 
  return best 
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linear_mss(array): 
  best_suffix = array() 
  best_sofar =  array() 
  best_suffix[0] = 0 
  best_sofar[0]  = 0 
  for i from 1 to n: 
    best_suffix[i] = 
   max(best_suffix[i-1]+array[i-1],0) 
    best_sofar[i] = 
   max(best_suffix[i-1], best_sofar) 
  return best_sofar[n] 

Given an array of positive and negative integers, 
find the greatest sum of a consecutive substring. 
 
 
 



Maximal Segment Sum 

naive_mss(array): 
  best = 0 
    for i from 0 to n-1: 
      for j from i to n-1: 
        v = sum(array[i,j]) 
        best = max(best, v) 
  return best 
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linear_mss(array): 
   
   
  best_suffix[0] = 0 
  best_sofar[0]  = 0 
  for i from 1 to n: 
      
    
      
    
  return best_sofar[n] 

Given an array of positive and negative integers, 
find the greatest sum of a consecutive substring. 
 
 
 



Synthesizer Work-flow 
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Maximal Independent Sum (MIS) 

Input:     Array of positive integers 
 
Output: Maximal sum of a non-consecutive   
  selections of its elements. 
 
 
 



Synthesizer Work-flow 
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Exponential Specification 

The user can define a specification as an exponential 
algorithm for MIS, it is: 
 
mis(A): 
   best = 0 
   forall selections: 
      if legal(selection): 
         best = max(best, value(A[selection])) 
   return best 
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Synthesizer Work-flow 
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Parameters 

● Comes from the user 
● For simple problems, extract from specification 
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For MIS: 



Synthesizer Work-flow 
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Skeleton: Shape of F.O.R 
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Update: Propagating Forward 

update1(x,y,z) = 
    choose_from(  
      {0,x,y,z,…x+y,…,max(x,y)+z,…}) 
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● Constructed from user’s parameters 
● Enumerates all compositions of operations 
● Selects the correct program  
 

● For m sub-problems and n operators: 
 Total of O((mmnm)m) possible programs  

 



Synthesizer Work-flow 
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MIS: The solution algorithm 

19 



The Problem: 
Given an array of integers:    A = [a1, a2, ..., an],  
return:                                         B = [b1, b2, ... , bn] 
such that:                                   bi = a1 +…+ an - ai 
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Do it in O(n) and cannot use subtraction? 

A Guy walks into an interview… 
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puzzle(A): 
  B = skeleton1(A) 
  C = skeleton2(A,B) 
  D = skeleton3(A,B,C) 
  return D 
 
 

Composition of Skeletons 



22 

skeleton1(A): 
  tmp1 = array() 
  tmp1[0] = 0 
  for i from 1 to n-1: 
    tmp1[i] = tmp[i-1]+A[n-1] 
  return tmp1 

skeleton2(A,B): 
  tmp2 = array() 
  tmp2[n-1] = 0 
  for i from 1 to n-1: 
    tmp2[n-i-1] 
          = tmp2[n-i]+A[n-i] 
 
skeleton3(A,B,C): 
  tmp3 = array() 
  for i from 0 to n-1: 
    tmp3[i] = B[i] + C[i] 
  return tmp3 

Solution 

puzzle(A): 
  B = skeleton1(A) 
  C = skeleton2(A,B) 
  D = skeleton3(A,B,C) 
  return D 



Synthesis of Parallelization: Prefix Sum 
Compute a F.O.R. out of order 
Goal: synthesize an associative function that allows solving 
the problem in parallel, as a prefix sum. 
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f 

f 
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The Approach: Exactly the same. The Skeleton is now a 
tree, the update needs to be associative. 
 result = update(update(A[0],A[1]), 
                    update(A[2],A[3])) 
         



Synthesized associative operator for MIS 
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This operator requires invention of 4 sub-problems 



Scalabilities of Synthesizer 
update1(x,y,z) = 
    choose_from(  
      {0,x,y,z,…x+y,…,max(x,y)+z,…}) 
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● For m sub-problems and n operators: 
 Total of O((mmnm)m) possible programs, 
 many of them are redundant.  

 Reduce the search space by: 
● Symmetry reduction of commutative binary operators 
● Apply unary operators at the leaves 
● Encode DP optimality structure 
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Comparison to Other Approaches  

Suppose the user wants to write a DP algorithm…  
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Future Works 

● Synthesis of Real World Problems 
● Synthesis of more prefix sum (on these problems) 
● Other DP Problems (that are not F.O.R) 
● Further scalability tricks 
● Complete the pipe (implementation on GPU) 
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The End: Questions? 
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