
_Synthesis________________

__Of___________________

______________Dynamic____

__________Programming_____

_________Algorithms________

Yewen (Evan) Pu
Rastislav Bodik
Saurabh Srivastava

1

Synthesis of DP: Why?

• Dynamic Programming is ParLab pattern #10

• Dynamic Programming is prevalent:
• AI: variable elimination, value iteration
• Biology: Gene matching
• Database: Query optimization

• Dynamic Programming is difficult

• Certain Dynamic Programming Algorithm can be
 parallelized

Synthesis of DP: Goal

Synthesizer for a subset of DP
• First-order recurrence: Captures O(n) DP
• A domain-specific parameterizable compiler
• Input: Specifications, Output: Algorithms
• Building block for harder DP algorithms

Dynamic Programming

Speed up search algorithm that is exponential run-
time by combining common sub-problems

Example: fib(n)

4

Challenges in DP algorithm design

Invent sub-problems: Decompose original problem
 Sub-problems may not be explicitly stated in
 the original problem.

 We may need to invent different sub-problems.

Recurrence: Solve problem from its sub-problems
 Formulate recurrences over the new sub-
 problems that puts them back together

Maximal Segment Sum

6

Given an array of positive and negative integers,
find the greatest sum of a consecutive substring.

Maximal Segment Sum

naive_mss(array):
 best = 0
 for i from 0 to n-1:
 for j from i to n-1:
 v = sum(array[i,j])
 best = max(best, v)
 return best

7

linear_mss(array):
 best_suffix = array()
 best_sofar = array()
 best_suffix[0] = 0
 best_sofar[0] = 0
 for i from 1 to n:
 best_suffix[i] =
 max(best_suffix[i-1]+array[i-1],0)
 best_sofar[i] =
 max(best_suffix[i-1], best_sofar)
 return best_sofar[n]

Given an array of positive and negative integers,
find the greatest sum of a consecutive substring.

Maximal Segment Sum

naive_mss(array):
 best = 0
 for i from 0 to n-1:
 for j from i to n-1:
 v = sum(array[i,j])
 best = max(best, v)
 return best

8

linear_mss(array):

 best_suffix[0] = 0
 best_sofar[0] = 0
 for i from 1 to n:

 return best_sofar[n]

Given an array of positive and negative integers,
find the greatest sum of a consecutive substring.

Synthesizer Work-flow

9

10

Maximal Independent Sum (MIS)

Input: Array of positive integers

Output: Maximal sum of a non-consecutive
 selections of its elements.

Synthesizer Work-flow

11

Exponential Specification

The user can define a specification as an exponential
algorithm for MIS, it is:

mis(A):
 best = 0
 forall selections:
 if legal(selection):
 best = max(best, value(A[selection]))
 return best

12

Synthesizer Work-flow

13

Parameters

● Comes from the user
● For simple problems, extract from specification

14

For MIS:

Synthesizer Work-flow

15

Skeleton: Shape of F.O.R

16

Update: Propagating Forward

update1(x,y,z) =
 choose_from(
 {0,x,y,z,…x+y,…,max(x,y)+z,…})

17

● Constructed from user’s parameters
● Enumerates all compositions of operations
● Selects the correct program

● For m sub-problems and n operators:
 Total of O((mmnm)m) possible programs

Synthesizer Work-flow

18

MIS: The solution algorithm

19

The Problem:
Given an array of integers: A = [a1, a2, ..., an],
return: B = [b1, b2, ... , bn]
such that: bi = a1 +…+ an - ai

20

Do it in O(n) and cannot use subtraction?

A Guy walks into an interview…

21

puzzle(A):
 B = skeleton1(A)
 C = skeleton2(A,B)
 D = skeleton3(A,B,C)
 return D

Composition of Skeletons

22

skeleton1(A):
 tmp1 = array()
 tmp1[0] = 0
 for i from 1 to n-1:
 tmp1[i] = tmp[i-1]+A[n-1]
 return tmp1

skeleton2(A,B):
 tmp2 = array()
 tmp2[n-1] = 0
 for i from 1 to n-1:
 tmp2[n-i-1]
 = tmp2[n-i]+A[n-i]

skeleton3(A,B,C):
 tmp3 = array()
 for i from 0 to n-1:
 tmp3[i] = B[i] + C[i]
 return tmp3

Solution

puzzle(A):
 B = skeleton1(A)
 C = skeleton2(A,B)
 D = skeleton3(A,B,C)
 return D

Synthesis of Parallelization: Prefix Sum
Compute a F.O.R. out of order
Goal: synthesize an associative function that allows solving
the problem in parallel, as a prefix sum.

23

f

f

f

The Approach: Exactly the same. The Skeleton is now a
tree, the update needs to be associative.
 result = update(update(A[0],A[1]),
 update(A[2],A[3]))

Synthesized associative operator for MIS

24

This operator requires invention of 4 sub-problems

Scalabilities of Synthesizer
update1(x,y,z) =
 choose_from(
 {0,x,y,z,…x+y,…,max(x,y)+z,…})

25

● For m sub-problems and n operators:
 Total of O((mmnm)m) possible programs,
 many of them are redundant.

 Reduce the search space by:
● Symmetry reduction of commutative binary operators
● Apply unary operators at the leaves
● Encode DP optimality structure

26

0.001
0.01

0.1
1

10
100

1000
10000

Enumeration

Symmetry
Reduction
Unary

Optimality

Scalabilities of Synthesizer

27

Comparison to Other Approaches

Suppose the user wants to write a DP algorithm…

28

Future Works

● Synthesis of Real World Problems
● Synthesis of more prefix sum (on these problems)
● Other DP Problems (that are not F.O.R)
● Further scalability tricks
● Complete the pipe (implementation on GPU)

29

The End: Questions?

	_Synthesis________________�__Of___________________�______________Dynamic____�__________Programming_____�_________Algorithms________
	Slide Number 2
	Slide Number 3
	Dynamic Programming
	Challenges in DP algorithm design
	Maximal Segment Sum
	Maximal Segment Sum
	Maximal Segment Sum
	Synthesizer Work-flow
	Slide Number 10
	Synthesizer Work-flow
	Exponential Specification
	Synthesizer Work-flow
	Parameters
	Synthesizer Work-flow
	Skeleton: Shape of F.O.R
	Update: Propagating Forward
	Synthesizer Work-flow
	MIS: The solution algorithm
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Synthesis of Parallelization: Prefix Sum
	Synthesized associative operator for MIS
	Scalabilities of Synthesizer
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29

